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phie (EEG-fMRI). Wir zeigen, dass beide Methoden 
durchaus zu einer Verbesserung der Lokalisation epilep-
tischer Areale beitragen, und dass sie als Standardme-
thoden in der prächirurgischen Diagnostik in Betracht 
gezogen werden sollten. Eine besondere Rolle spielt da-
bei die direkte Kombination von ESI und EEG-fMRI, da 
damit die unterschiedliche zeitliche und räumliche Auf-
lösung der beiden Methoden optimal ausgenutzt wird 
und dadurch sowohl Beginn als auch Ausbreitung der 
Aktivität in epileptischen Netzwerken abgebildet wer-
den kann.

Schlüsselwörter: Elektroenzephalographie (EEG), funk-
tionelle Magnetresonanztomographie (fMRT), Epilepsie

Combinaison de l’EEG et de l’IRM fonctionnelle pour la 
caractérisation des réseaux épileptiques

Le but de l‘évaluation préchirurgicale des épilepsies 
focales est de localiser le foyer épileptique aussi précisé-
ment que possible et de le délimiter du cortex éloquent 
de façon fiable. Le „gold-standard“ pour atteindre cet 
objectif est l‘enregistrement direct du cerveau avec des 
électrodes implantées et la stimulation électrique de 
ces mêmes régions au moyen des électrodes implan-
tées. Toutefois, des efforts importants sont entrepris 
pour améliorer l‘évaluation non-invasive avec des nou-
velles techniques d‘imagerie fonctionnelle. Cet article 
décrit deux de ces techniques émergentes, l‘imagerie 
de source électrique (electric source imaging, ESI) et 
l‘imagerie par résonance magnétique fonctionnelle 
guidée par l‘enregistrement simultané de l‘EEG (EEG-
fMRI). Ces deux méthodes ont prouvé leur utilité pour 
localiser le foyer épileptique mais sont limitées par leur 
basse résolution spatiale (EEG) ou temporelle (fMRI). 
Pour surmonter ces  désavantages, nous proposons de 
combiner ces deux méthodes en réalisant l‘imagerie de 
source de l‘EEG enregistré dans l‘IRM et d‘utiliser ces 
résultats pour guider l‘analyse de l‘IRM. Cette combi-
naison permet de visualiser précisément l’initiation et 
la propagation de l’activité neuronale dans des réseaux 
épileptiques. 

Mots clés : Electroencéphalographie (EEG), imagerie par 
résonance magnétique fonctionnelle (IRMf), épilepsie

Summary 

The aim of the presurgical evaluation of focal epi-
lepsy is to localize the epileptic focus as precise as pos-
sible and to reliably delineate it from eloquent cortex. 
While the gold-standard to achieve this goal is the re-
cording from and the stimulation of electrodes directly 
implanted in the brain, attempts are undertaken to im-
prove the non-invasive phase of the pre-surgical evalu-
ation by new functional imaging methods. This review 
article describes two of these newly emerging tech-
niques, electric source imaging (ESI) based on high-den-
sity EEG, and functional magnetic resonance imaging 
informed by simultaneously recorded EEG (EEG-fMRI). 
While both methods have demonstrated their utility 
in focus localization, they have their limitations due 
to low spatial (EEG) or low temporal (fMRI) precision. 
To overcome these limitations, we propose to combine 
the two methods by performing source analysis of the 
EEG recorded in the scanner and using these results to 
guide the interpretation of the fMRI. 
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Kombination von EEG und funktionellem MRT zur 
Charakterisierung epileptischer Netzwerke

Ziel der prächirurgischen Abklärung von Patienten 
mit fokaler Epilepsie ist es, den epileptischen Herd so 
genau wie möglich zu lokalisieren und abzuklären, ob 
neurologisch wichtige Funktionen betroffen sind oder 
in der Nähe liegen. Der Goldstandard für diese Abklä-
rung sind die Ableitungen und die Stimulation von di-
rekt im Gehirn implantierten Elektroden. Es werden 
aber vermehrt Studien durchgeführt, die neue, nicht-
invasive bildgebende Verfahren zur Fokus-Lokalisation 
evaluieren. Dieser Artikel beschreibt zwei dieser Me-
thoden, die Quellenlokalisation basierend auf hochauf-
lösendem EEG (ESI) und die kombinierte Registrierung 
von EEG und funktioneller Magnetresonanztomogra-
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Introduction

While the EEG is doubtlessly the most important 
tool in the diagnosis of epilepsy and the determination 
of the epileptic syndrome, it is usually not considered 
as a method that allows to localize the epileptic focus 
more precisely than on a lobar level. The reason is that 
each EEG electrode reflects activity from multiple re-
gions to different extends due to volume conduction, 
and thus does not only measure the neuronal activity 
directly underlying it. However, by not only looking at 
the local activity at a certain electrode but looking at 
the simultaneous activity of many electrodes distrib-
uted all over the head, we can actually estimate the 
sources in the brain that produced the scalp potential at 
any given moment in time. The precision of this source 
localization improves by increasing the number of elec-
trodes and by incorporating realistic models of the head 
derived from structural images of the patient’s brain in 
the calculations. Using such techniques, EEG has be-
come a mature functional brain imaging method with 
the unique advantage of excellent temporal resolution. 
The importance of temporal resolution is particularly 
evident in the localization of epileptic activity, because 

it very quickly (within a few milliseconds) spreads with-
in large-scale, whole-brain networks (Figure 1). 

Despite impressive improvements of EEG source 
localization in the last years, there are natural limits 
concerning the spatial precision, particularly if areas 
further away from the scalp surface are involved. High 
spatial precision is better achieved by functional mag-
netic resonance imaging (fMRI), a method measuring 
local blood oxygenation level dependent (BOLD) chang-
es due to neuronal activity. Given the high spatial reso-
lution, the request to apply this method to the localiza-
tion of epileptic foci emerged. However, fMRI alone is 
challenging because seizures are difficult to record due 
to movement artifacts, and interictal activity can only 
be detected by the EEG. Therefore, attempts have to be 
undertaken to record EEG within the MRI scanner in or-
der to determine the time point of interictal events and 
search for BOLD changes that are correlated with these 
events. This EEG-informed fMRI technique has been 
used by several groups in the last years and provided 
very useful information about the large-scale networks 
that are involved in the epileptic activity of a given pa-
tient. 

Figure 1: Evidence for fast propagation of interictal activity within the brain by electric source imaging (ESI). The top row shows 

overlaid traces of an averaged interictal spike recorded from 128 electrodes. Below, the ESI result using the individual MRI as 

head model is shown for different time points during the spike (in 10 msec steps). The encircled area illustrates the region that 

was subsequently resected. The example illustrates that the source maximum is initially (at the beginning of the spike) well lo-

calized within the resected area but then quickly propagates and is already outside of the epileptogenic zone at the peak of the 

spike. It underlines the importance of the fast temporal resolution of electric source imaging. Data from Lantz et al. [1].
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However, the spike-related BOLD responses are of-
ten widespread and do not only involve one brain area 
that could be considered as the focus. The reason for 
these multiple responses is the spread of epileptic ac-
tivity within the epileptic network during ictal, but 
also interictal events. fMRI results are thus often dif-
ficult to interpret if no additional information about 
the focus location is available. We propose to get this 
additional information from source-analysis of the EEG 
in the scanner. Thereby, the temporal resolution of the 
EEG source imaging allows to disentangle initiation 
from propagation of the activity and to pinpoint to the 
area of interest for the fMRI interpretation. If the fMRI 
indeed shows BOLD responses in this area, it will be of 
higher spatial precision than the EEG source imaging 
and could therefore guide the eventual surgical inter-
vention more precisely. In the following chapters, I give 
an overview of these imaging techniques and their ap-
plication in epilepsy.

Electric Source Imaging (ESI)

An increasing number of studies demonstrated that 
EEG analysis with source modeling methods provides 
valuable information about the localization of the epi-
leptic focus. While simple equivalent dipole fitting al-
ready gave good source estimations [2, 3], an important 
step towards achieving a real 3-dimensional imaging of 
the electrical activity in the brain was provided by the 
distributed inverse solution algorithms [4-7] that are 
able to visualize the current density distribution in the 
entire brain at each moment in time (the so-called elec-
tric source imaging, ESI; for reviews see [8, 9]). 

Sperli and colleagues [10] used this ESI technique 
to analyze interictal discharges of 30 operated and 
seizure-free children recorded with the standard clini-
cal EEG of less than 30 channels. They reported cor-
rect localization on a lobar level in 90% of the cases, 
whereas the traditionally used nuclear imaging meth-
ods PET and SPECT revealed only 82% and 70% correct 
localization, respectively. Michel et al. [11] applied ESI 
to spikes recorded with 128-channel EEG in 24 patients 
who were subsequently successfully operated. They 
found that the source maximum was located within 
the resected zone in 79% of the patients. Zumsteg and 
colleagues [12] performed ESI analysis in 15 mesial 
temporal lobe epilepsy patients and compared them 
with simultaneously recorded data from foramen ovale 
electrodes. They showed that 14 of the 19 different lo-
cal field patterns seen by the foramen ovale electrodes 
could be correctly identified with ESI. These results indi-
cate that even mesial temporal sources can be recorded 
by scalp EEG and properly localized by ESI, a result that 
has also been demonstrated by Lantz et al. [13] in si-
multaneous EEG and intracranial EEG recordings. 

It has been assumed that ESI might have problems 
in patients with large lesions due to changes in the 

electrical conductivity within the brain. This does not 
seem to be the case: Despite large cerebral lesions, ESI 
correctly localized spike activity within the resected 
zone in 12 of 14 patients in the study by Brodbeck and 
colleagues [14]. The same authors also investigated pa-
tients without any lesion visible in the MRI [15]. Non-le-
sional epilepsy is known to be most challenging for fo-
cus localization. They found that ESI based on high den-
sity EEG (more than 128 channels) correctly localized 
the maximal activity of the spikes in the subsequently 
resected zone that rendered the patients seizure-free.

Given these promising studies Plummer and col-
leagues [16] concluded in a recent comprehensive re-
view that ESI deserves a place in the routine work-up 
of patients with localization-related epilepsy, but that a 
prospective validation study conducted on larger clini-
cal groups is still required. Recently, such a prospective 
study was reported by Brodbeck et al. [17]. 152 pa-
tients who were operated and had a sufficiently long 
post-surgical follow-up to define the outcome of the 
surgery with respect to their epilepsy were included 
in the study. This allowed to evaluate the sensitivity 
and specificity of ESI. The results showed that ESI had 
a sensitivity of 84% and a specificity of 88% if the EEG 
was recorded with a large number of electrodes (128-
256 channels) and if the individual magnetic resonance 
image was used as head model. These values were su-
perior to those of structural MRI (76% sensitivity, 53% 
specificity), PET (69% sensitivity, 44% specificity) and 
ictal/interictal SPECT (58% sensitivity, 47% specificity). 
However, the sensitivity and specificity of ESI decreased 
to 57% and 59%, respectively, with low number of elec-
trodes (32 channels) and a template head model, em-
phasizing the importance of high-density recordings 
and realistic head models. 

While there is now more and more convincing evi-
dence on the yield of the analysis of interictal spikes 
[18], there is a constant criticism that the true identifi-
cation of the seizure onset zone requires the analysis of 
ictal and not only interictal activity [19]. In contrast to 
other imaging techniques such as MEG and fMRI that 
are sensitive to movement artifacts, EEG can be used to 
record seizures. However, the challenge in the analysis 
of ictal EEG is the determination of the exact time point 
of the onset of the seizure, which is required in order 
to correctly localize the seizure onset zone. In many 
patients, seizures start with clinical changes without 
any visible changes in the scalp EEG. Once the seizure 
is also evident on the EEG, propagation already started 
and complex patterns of different frequencies arise and 
may change over a short period of time. Several meth-
ods have been tested to capture EEG onset before they 
are obvious by visual inspection. Blanke et al. [20] and 
Lantz et al. [21] applied phase-corrected frequency 
analysis to determine which area started first with the 
most prominent initial ictal frequency. In Lantz et al. 
[21], the source reconstruction of the predominant fre-
quency was concordant with the intracranial findings 
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cause they are difficult to identify by the EEG source 
imaging methods described above. Such deep genera-
tors have been identified in patients with malforma-
tions of cortical development [34], as well as in patients 
with different types of generalized epilepsy [35-38].

Multiple studies have demonstrated that BOLD sig-
nal changes do not only occur in regions tightly coupled 
with the region generating the spikes in temporal lobe 
epilepsy, but also in regions remote from the presumed 
focus [39], where no spikes, but sometimes EEG spec-
tral changes are observed [40]. These findings support 
the concept of functional networks activated by the 
epileptic discharge [31]. Interestingly, these remote 
changes are not always increases in BOLD signals but 
sometimes also BOLD decreases [41, 42]. The reasons 
for negative BOLD response related to interictal activity 
are not yet clear and could be related to steal phenom-
enon secondary to the increased blood flow, to abnor-
mal coupling between neuronal activity and blood flow 
in the pathological area, or to decreased or inhibited 
synaptic activity (for a discussion see [30]). When locat-
ed in the spike area, negative BOLD appears to have the 
same localization value as the positive BOLD [43]. 

A problem for EEG-fMRI studies poses the fact that 
many patients do not display any epileptic discharges 
during the short period during which they can remain 
in the scanner. As the epileptic discharges are needed 
to build the regressor, data of patients without spikes 
in the scanner are generally lost. Recently, a method 
has been developed that can save some of these data 
and provide meaningful results [44]. The principal idea 
of the method is to use the EEG recorded during long-
term clinical monitoring outside the scanner to search 
for spikes and construct a spike-specific scalp potential 
map. Then, the correlation of this map with the EEG in 
the scanner is computed for each time frame. The time 
course of this correlation coefficient can then be used 
as regressor for fMRI analysis to map hemodynamic 
changes related to these epilepsy-specific maps (Figure 
2). In the study of Grouiller et al. [45], this algorithm 
provided concordant results with intracranial electro-
encephalography or with the resection area in 14 of the 
18 patients (78%) whose data was not usable with the 
conventional method. This approach, developed in col-
laboration with groups from Geneva, London and Kiel, 
significantly increases the yield of simultaneous EEG-
fMRI to localize the epileptic focus non-invasively.

The major limitation of EEG-fMRI for the localiza-
tion of epileptic discharges is the low temporal resolu-
tion of the fMRI, which makes it virtually impossible 
to separate discharges coming from the primary focus 
from activity generated in propagation areas in the epi-
leptic network. It is therefore rather the rule than the 
exception to find multiple areas of BOLD changes, and 
it needs additional tools to determine their functional-
anatomical relationship. Already in our first report of 
EEG-fMRI in epilepsy, we proposed to use EEG source 
imaging as additional information to guide the inter-

in 7 of 9 cases. However, this type of simple frequency 
analysis is not able to catch very fast propagation be-
cause the time-resolution of the FFT is low. Time-fre-
quency analysis might be more promising in this re-
spect. Recently, Yang et al. [22] used independent com-
ponent analysis in the time-frequency domain to deter-
mine maps that represented the rhythmic discharges 
at seizure onset. While this method is very promising, 
it only works in patients in whom the seizure onset is 
characterized by continuous synchronized rhythmic 
discharges. Lantz et al. [23] proposed a frequency-inde-
pendent method based on topographic pattern recog-
nition algorithms. Using k-means cluster analysis, map 
topographies that were most dominant during seizure 
onset were determined. Source reconstruction of these 
maps yielded results which were consistent with the 
results from invasive recordings. Further studies with 
high-density EEG applied to a larger number of patients 
are needed to establish the most reliable method to lo-
calize seizure onset with ESI.

EEG-guided functional Magnetic Resonance Ima-
ging (EEG-fMRI)

The most established functional imaging method 
is functional resonance imaging (fMRI) and it was thus 
natural that researchers tried to use this method to 
localize the epileptic focus. However, since EEG is the 
only way to determine interictal epileptic activity, the 
recording of EEG in the scanner was required. Such MR-
compatible EEG systems have been developed in 1993 
by John Ives and colleagues [24]. Several groups have 
used these systems to perform spike-triggered fMRI 
analysis [25-27]. In these initial studies, BOLD acquisi-
tion was initiated by spikes observed in the ongoing 
EEG. During the BOLD acquisition, the EEG was lost, 
but since the hemodynamic response peaks several sec-
onds after the related neuronal activity, the destroyed 
EEG during the scanning was not a major problem. 
Nevertheless, recording sessions were long, the timing 
was variable, and an experienced epileptologist needed 
to be present during the recording to identify epilep-
tic discharges. Soon after, algorithms were developed 
that allowed to eliminate the main artifacts during the 
BOLD acquisition, namely the gradient and the ballis-
tocardiac artifacts [28, 29]. With these algorithms in 
hand, continuous BOLD acquisition could be performed 
and the EEG could offline be inspected for epileptic dis-
charges. These marked spikes could then be used as 
regressors for the convolution with the hemodynamic 
response function. Commercial systems were quickly 
available and used by several groups who repeatedly 
showed the possibility to detect spike-related activity 
in the EEG-fMRI (for reviews see [30-33]).

EEG-fMRI is particularly interesting to investigate 
the eventual participation of deep brain structures in 
the generation or propagation of epileptic activity, be-
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sources co-localised with other BOLD clusters in half of 
the cases. It was concluded that simultaneous ESI and 
EEG-fMRI analysis are more powerful to distinguish ar-
eas of BOLD response related to initiation of IED from 
propagation areas than fMRI alone. Very similar find-
ings were reported in the study by Groening et al. [55]. 

Based on these studies Vulliemoz et al. [56] investi-
gated in 10 patients whether the estimated EEG source 
activity improved models of the BOLD changes in EEG-
fMRI data. ESI was performed on intra-fMRI averaged 
spikes to identify the irritative zone. The continuous 
activity of this estimated spike source over the entire 
recording was then used for fMRI analysis and the re-
sults were compared to the conventional spike-related 
model. The continuous ESI model explained significant 
additional BOLD variance in regions concordant with 
results from video-EEG, structural MRI or, when avail-
able, intracranial EEG in 10 of 15 interictal epileptic dis-
charges.

These studies clearly show that the source anal-
ysis of the EEG in the scanner, is extremely valu-
able to guide the interpretation of the fMRI. This 
ESI-guided fMRI interpretation allows to fully exploit 
the high spatial precision of the fMRI in the frame-

pretation of the fMRI results [25]. Several studies then 
demonstrated the use of such multimodal analysis [46-
50] but they usually used the EEG recorded outside the 
scanner to compare with the BOLD response, assuming 
that the spatiotemporal behavior of the spikes are the 
same in- and outside the magnet. It is well known in 
clinical practice that the propagation behavior of sin-
gle spikes is quite variable, even in patients known for 
stable unifocal epilepsy. Very powerful correction algo-
rithms are currently available, so that artifact-reduced 
high density EEG (up to 256 channels) can be retrieved 
inside the magnet [51, 52]. Therefore, EEG source anal-
ysis can now be performed on the EEG in the scanner 
and directly be correlated with the hemodynamic re-
sponse function [53], assuring that the same spikes are 
used for both, ESI and fMRI. 

A systematic study using this method has been per-
formed by Vuillemoz et al. [54]. They found that in 10 
of the 12 recordings, ESI at the beginning of the spikes 
was anatomically close to one BOLD cluster. Interest-
ingly, ESI was closest to the positive BOLD cluster with 
maximal statistical significance in 4/12 cases and clos-
est to negative BOLD responses in another 4/12 cases. 
ESI at later time frame showed propagation to remote 

Figure 2: EEG-informed functional MRI using the method described in Groullier et al. [45] . Spikes are detected in EEG recordings 

outside the scanner and averaged. The scalp potential map at half-rise of the spike is determined and the spatial correlation 

of this map with each single map of the EEG recorded inside the scanner is calculated. The higher the correlation the more the 

EEG resembles the one seen during the spikes. The correlation is then down sampled and convolved with the hemodynamic 

response function in order to determine voxels with significant BOLD response related to the presence of the spike map. In this 

example, maximal BOLD is found in the left mesial temporal lobe. The patient suffered from a left hippocampus sclerosis that 

was surgically removed and rendered the patient seizure-free. The fMRI result is co-registered with the post-surgical MRI. Data 

from Grouiller et al. (45).
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work of epilepsy surgery by pre-selecting the most 
relevant area of interest with ESI and then identi-
fying the significant BOLD-voxels within this area.  

 
Conclusion

This review intended to show that the presurgical 
evaluation of patients with pharmaco-resistent epilep-
sy can profit from new non-invasive imaging methods 
that are very powerful in localizing the epileptic focus: 
EEG-based electric source imaging and EEG-guided 
functional magnetic resonance imaging. Prospec-
tive studies on sufficiently large patient groups have 
clearly demonstrated the high sensitivity and specific-
ity of these methods, particularly if modern technol-
ogy (high-density EEG and high field fMRI) are used. 
Most powerful is in our opinion the direct combination 
of these two methods, as this combines in an optimal 
way the advantages of the two methods with respect 
to temporal and spatial resolution. There is no doubt 
that these methods should enter routine clinical use 
in presurgical epilepsy centers. They do not only help 
to localize the epileptic focus non-invasively, they also 

Figure 3: Combination of functional magnetic resonance imaging (fMRI) and electric source imaging (ESI). Left: EEG is conti-

nuously recorded in the scanner. Offline, the EEG is filtered and artifacts are removed. BOLD responses correlated with the 

appearance of spikes in the EEG are then calculated. In this case two significant regions were found in the left lateral and mesial 

temporal lobe. Right: Averaged spikes of the same recording in the scanner is analyzed with ESI. It reveals activation in the 

left lateral temporal lobe at the very beginning of the spike and then propagation to the mesial temporal lobe later during the 

spike-wave complex, strongly pointing to the lateral temporal lobe as epileptic focus. This information can then be used to se-

lect the fMRI voxels of interest in the lateral temporal lobe and look more carefully for structural or metabolic abnormalities in 

this area. Data from Vulliemoz et al. [54].

can teach us much about the functional properties of 
epileptic networks in focal as well as in generalized epi-
lepsy.
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